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What makes a Fuel Cell

1) Anionic path between two volumes containing
reactants at different partial pressures » AV

1V Electrolyte

2) An electrical connection through a load to create a
closed circuit
m) | x AV= Power

3) The ability to maintain the electrochemical process
and sustainably produce meaningful power
1) Feed reactants, remove products

2) Maintain the conditions that create the ionic path i.e
temperature, humidity



Fuel Cell Technologies

AFC PAFC MCFC SOFC PEMFC

Potassium : : Molten .
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Operating
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PEM vs SOFC: high level comparison

Power density PEM: 10x advantage

Efficiency SOFC: more pronounced at high power
PEM: Faster dynamics, seconds vs
Dynamic response minutes+

Thermal integration SOFC: higher temperature heat rejection
Maturity/Cost PEM: design solutions converging

Fuel flexibility SOFC: PEMs need high purity H2



Example: Proton Exchange Membrane FC
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Fundamentals of fuel cell performance
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Fuel Cell efficiency: is it too low?

Hydrogen and electric drive*
Efficiency rates in comparison using eco-friendly energy

Well-To-Tank Tank-To-Wheel

E-car Energy Transportation Electric battery E-engine
and storage (high capacity)
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Hydrogen car Energy Electrolysis Compressionand  Transportion Fuel cell and Electric battery E-engine
liquefaction and filling power generation (low capacity)
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Source: EVBoosters.com



Is there a deeper meaning?

1 kWh = 3600 kJ

Energy corresponding to a power Energy
trasferred in a time interval



Good days and Bad days
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@ Solar
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10.49 % of electricity available in ™2 Germany comes
from solar
(7.87 GW | 75 GW)

utilizing 8.34 % of installed capacity
(7.87 GW | 4.3 GW) (Source: Fraunhofer ISE)

representing 1.02 % of emissions

(0.276 kt [ 27.2 kt of CO2eq)

with a carbon intensity of
35 gCOzeq/kWh (Source: INCER ACV)




Energy Storage Technologies

Lowest levelised cost in 2020
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Acronyms:
PHES - Pumped Hydro
CAES - Compressed Air

VRFB - Vanadium redox-
flow

10



Generic PEM-FC system architecture

A Fuel Cell Module is the smallest unit built around the fuel cell
stack that is independently operakle
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State of the art automotive designs

* Modules designed for on-road applications
often constrained as like-for-like
replacement to internal combustion engines

* Volumetric power density is key
* Unit cost is key
« Compromise on performance — stack size

* No standard use profile in marine
application, however, in general
* On-road vehicle constraints do not apply
* Range is often key -> performance optimisation

Example: cellcentric BZA150 truck module
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(4) Electrons e must
travel through an external
circuit from the anode to

Stack subcomponents

Proton Exchange Membrane (PEMFC):

(3) The platinum catalyst
splits Hydrogen (H,) into
positively charged ions H~
and electrons e. The
porous MEA allows only
H- ions to pass through to
the cathode.

(2) Hydrogen (H,) fuel is
channelled through the
anode pilate

(5) Positively charged ions H+
combine with O, at the
cathode, forming water (H,O)
that flows out of the cell.

o«

the cathode. creating an Q\/ MEA: Membrane
electrical current. + :

Electrolyte
(1) Oxygen (O,)is Assembly
channelled through the

cathode plate

NB: Polymer Electrolyte
Membrane (PEM) is a kind of
Proton Exchange Membrane
(PEM)

p— Often the two definitions are
interchangeable but there
are Proton Exchange FC
technologies not based on
polymer electrolytes

(6) Hydrogen (H,)
in excess flows
out of the cell
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Bipolar Plates

To connect electrically the anode of a cell and the cathode of the following

= BPP Material choice is the main remaining
- discriminant in PEM stack design

Free definition of geometry on both sides
» Corrosion resistant
« Already cost competitive at low
production volumes

- Metallic
‘- « Lower thicknesses thus greater flexibility
* Due to stamping/hydroforming
geometries on both sides have to be
- inverted compromising design
-« May require coating to resist corrosion
» Cost competitive only at high production
volumes

Example: TMNEtching and Symbio



PEM System - Process Flow Diagram
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The FINCANTIERI Hi-Sea lab @ UNIGE ..since 2018

The largest PEM fuel cell laboratory systems of the world specifically designed for marine applications
assessment

Numbers

Fuel Cell Power 130kW + 130kW
Two DC/DC converter 350-600V
One AC/DC 60kW

Basic Design
Assessment of Fuel Cell
Systems for marine
applications: Mega Yacht,
Navy, Passenger Ships,
Ferries System Sizing
Dynamic simulations of
Fuel Cells and Metal

Hydrides Storage systems |

Genova HI-SEA

Hydrogen Initiative for Sustainable Energy

Applications

Univesity of FINCANTIERI
Genova
The sea ahead

# Uherneshanieal Power Groap

UniGe ‘ 1?1 y Thermochemical Power RUNBniversity of Genoa, Italy - 2020 16
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